FUELSPACE

FuelSpace is a blog focusing on the emerging commercial space economy, space exploration, energy production, technology and innovation. We also cover the skills that enable great achievements in these areas including sales and persuasion, productivity, self-discipline, and leadership.

Three Technologies that will Transform the the Natural Gas Fueling Industry

Fueling a fleet of vehicles with natural gas as opposed to gasoline or diesel fuel is often considered an innovative concept. In reality, it is just good business. Using a clean, affordable, domestically-produced alternative fuel makes sense. However, it is important to realize that, compared to the diesel fueling industry, natural gas vehicle (NGV) fueling is still relatively new. It has only been in the last decade that Compressed Natural Gas (CNG) and Liquefied Natural Gas (LNG) have secured a solid foothold in the US fleet industry.  

An IMW compressor, gas dryer, and storage system at a garbage truck fueling station. Image Credit: James Orsulak 

An IMW compressor, gas dryer, and storage system at a garbage truck fueling station. Image Credit: James Orsulak 

Natural gas vehicle programs are driven by economics. Lower fuel costs = increased profit margins and a distinct competitive advantage, but it comes with a few headaches. Both CNG and LNG stations require a good deal of maintenance compared to traditional liquid petroleum stations.  A diesel station is a simple liquid storage tank with a fuel pump and a dispenser.  A CNG station, by comparison, involves an industrial compression system powered by an electric engine. This is a substantial uptick in complexity, risk, and ongoing maintenance costs. If your station only has  a single compressor, a major catastrophic failure can leave you without fuel for some time. On the vehicle side we have fuel storage challenges. CNG vehicle storage systems are cumbersome and often add weight to the vehicle. Luckily, we live in age of technological innovation and progress. These challenges have not gone unnoticed by fuel providers and technology partners, who have been quietly sinking money into research and development to solve these problems.  Below are some of the advances that will be coming soon to a fueling program near you. 

1. 3D printing

3D printing, also known as additive manufacturing, is quickly gaining traction in the industrial sector. 3D printing is the opposite of traditional manufacturing, which is subtractive. If you need a steel part, traditionally you would start with a block of steel and then cut the piece out of the block. So we would be subtracting steel to get to the finished part. Additive manufacturing is the opposite. It uses a computer-generated 3D model of the part and then "prints" the object by laying down tiny layers of metal. The metal is applied as a powder (from the print cartridges) and is then fused together using a laser.  3D printing can now be done in plastics, metals, and even carbon fiber. The only limitations at this point are the size of the object. You obviously need a printer that is larger than the object you are trying to print, as seen here. 

Large-scale 3D printers can now print objects in plastic, metal, concrete, and even carbon fiber   Image Credit: metalworkingmagazine.com

Large-scale 3D printers can now print objects in plastic, metal, concrete, and even carbon fiber  Image Credit: metalworkingmagazine.com

3D printing has two primary uses. The first is rapid prototyping. 3D printing allows you to quickly generate numerous designs and quickly test the results in the real world.  It reduces the time and cost of finding the right solution.  NGV up-fitters can use this to test out different fuel injectors, hose clamps, or nozzles. A compressor manufacturer like IMW or ANGI, can use this technology to test out different compressor components on the fly. The result is better machinery that can brought to market much faster.  

An infinite variety of metal components can now be made using a  3D printer    Image Credit: Solid Concepts

An infinite variety of metal components can now be made using a  3D printer   Image Credit: Solid Concepts

The second use of 3D printing is on-demand manufacturing. Most fleets and fuel providers who have an on-site natural gas fueling station stock a large inventory of critical parts.  Some parts, such as those from discontinued compressor brands, can be very difficult to find.  3D printing gives us the ability to address this issue. An onsite printer can enable fleets and station providers to simply print parts as needed instead of ordering them. They can download the 3D model of the file and have it printed the same day instead of waiting a week or more for shipping.  A large variety of parts used in station maintenance are relatively simple plastics or metals, and can now be created with a 3D printer.   This technology will allow us to create better station components more quickly, while also giving us the ability to maintain stations with lower inventory costs.

2. The Industrial Internet and Predictive Analytics

Your CNG station called. It will fail tomorrow at 5pm. We will go ahead and fix it now. Image Credit:  Stephen Bowler via Flickr

Your CNG station called. It will fail tomorrow at 5pm. We will go ahead and fix it now. Image Credit: Stephen Bowler via Flickr

You may have heard of the Internet of Things (IoT). This is the practice of embedding tiny data-collecting sensors in everyday items such as your refrigerator or door lock. When we apply this concept to industrial applications, we call it the industrial internet.  General Electric, Cisco, Google, and a host of other tech giants are pioneering ways to collect, track, analyze and store data from almost any type of machine.  Compressors and LNG liquefaction equipment are perfect candidates for this technology, and many fuel providers are already incorporating this into their operations. So what can it do?  Imagine a compressor that can talk to station technicians in real-time, sending pressure, heat, and fill data by the minute. In a dual compressor setup, one machine can communicate with the other to optimize running hours and wear-and-tear on critical parts. Machines can actually stop catastrophic failures before they happen. Instead of a complete failure -- the system shuts down, informs the operations team, and tells them what parts are needed. The result will be cost savings and vast improvements in uptime. Future stations will be intelligent enough to optimize for temperature, electricity demand, and gas quality without guidance from their human caretakers. We are only limited by our imagination. GE's long term vision is for machines that will eventually be able to perform self-repair, a technology that is science fiction by today's standards, but will one day become reality. Ultimately big data is good data, and natural gas fueling stations are now generating huge amounts of it. The end result will be vastly improved station operations and reduced costs. A plus for fleets and consumers who are filling up with natural gas.

3. Adsorbed Natural Gas Storage Systems 

Activated carbon is commonly used as the enabling technology for adsorbed natural gas systems.   Image Credit: Wikipedia

Activated carbon is commonly used as the enabling technology for adsorbed natural gas systems.  Image Credit: Wikipedia

If you have followed the NGV industry for a few years, you have likely heard of Adsorbed Natural Gas (ANG) storage systems.  ANG is often referred to as the "holy grail" of gaseous fuel storage systems.  The basic idea is to store natural gas in a carbon honeycomb structure and eliminate the need for high pressure storage cylinders.  As the gas impacts the system, it is adsorbed into the material where it can be stored at a very low pressure in a solid form. This means we no longer need to use high pressure cylinders to store the fuel onboard the vehicle. This reduces weight and allows the storage to be custom molded into a huge variety of shapes and sizes. The real beauty of an ANG system is this: it is backwards compatible. ANG systems do not require the 3,600 pounds per square inch (psi) pressure needed for today's CNG vehicles, but...they can still use it.  An ANG-equipped vehicle can still use the existing CNG network to fill up. While it is true they could dramatically lower the required pressures for an onsite station, they would not be stranded by adopting the new technology -- an important advantage.  ANG systems can also be fueled using LNG. The LNG is simply vaporized and then adsorbed into the system. This gives the technology a clear, forward-looking advantage. Fuel providers could adapt in-step vs. having to retrofit all their existing stations. This would be a true game changer. Here is the latest: a company called BlackPak was awarded $4.6 million last March to further develop ANG technology.  The first commercial installations of ANG systems were installed in May by EnerG2 in the NW natural utility fleet. We will be following the demonstration tests closely!

The NGV industry is still maturing, meaning it is ripe for technological disruption. Keep an eye on these emerging innovations (and others) as they continue to play a role in shaping this growing industry. Don't be afraid to ask your fuel providers what they are working on behind the curtain so you can understand how it will benefit you and your fleet operation. 

Five Ideas to Utilize the Vast Resources of Space

The SpaceX Falcon 9 is one of the most cost-effective launch vehicles in the world.  Image Credit: SpaceX

The SpaceX Falcon 9 is one of the most cost-effective launch vehicles in the world. Image Credit: SpaceX

The ability to deliver resources from space into Earth's orbit is on the horizon. Technological advances in launch systems, robotics, machine learning, laser communication, and 3D printing are converging to open the final frontier for business. Lifting things out of earth orbit is expensive. No secret there.The SpaceX Falcon 9 Rocket can deliver up to 28,000 lbs to Low Earth Orbit (LEO) for around $60 million.  An astonishing improvement on the $250 million + price tag of a United Launch Alliance (ULA) launch. In either case this is still very expensive. Reusable rockets will hopefully arrive very soon and will lower launch costs exponentially. However, one of the best solutions to reducing launch costs is this: do not launch things that can already be found in space. Source your resources from the very place you are headed in order to reduce costs. This is called In-Situ Resource Utilization (ISRU) and it is a concept much older than space travel.  Early explorers in every phase of human expansion lived off the land as they traveled.  It is simply not feasible to bring all of your supplies with you when you are exploring the unknown. This concept still applies today, and the commercial space industry is about to take it to a whole new level. 

The sun provides 24 hour power in space, and the extreme cold enables low cost storage of cryogenic materials such as fuel (free AC). It is also technically feasible to source essential materials from both the moon and asteroids. Water is the most obvious target because it can be split into Hydrogen and Oxygen, the two components of high-efficiency rocket fuel. Shackleton Energy has announced plans to mine the water-ice from the permanently shadowed areas of the moon. They plan to use it as a feedstock for orbital fueling depots, which we discuss below. Lunarcrete, which is a form of concrete produced from lunar regolith, could be used as a building material on the moon or elsewhere. Planetary Resources and Deep Space Industries plan to mine asteroids for water and minerals that can be delivered to Earth orbit. Many near-Earth asteroids require less energy to reach the moon, and hold immense amounts of water locked away as ice, as well as a huge array of valuable metals and raw materials. Combine these resources with advances in 3D printing and robotics, and you have a recipe for the space construction industry.  Deep Space Industries plans to launch an orbital 3D printer, and SpiderFab is developing robotic spiders that use 3D printing arms to create orbital structures. Made in Space beat them both to the punch by delivering a 3D printer to the International Space Station (ISS) last September. Construction on Earth is big business... one of the biggest actually. By 2020, the terrestrial construction industry is expected to top $4.8 trillion. So just imagine what will happen when this industry is freed from the bonds of gravity.   

Assume that all of these incredible advances in space technology come to pass.  What would you do with affordable raw materials, fuel, 3D printers, and a robotic construction staff available in space? Here are some ideas, but we'd love to hear yours!  

1. Orbital Fueling Depots

"Orbital Fueling Inc., making your space dreams come true since 2020"  This might be the tagline of a future orbital fueling services provider. Orbital fueling depots will be the second greatest leap in space capabilities in the next century, preceded only by fully reusable launch vehicles. Once you can refuel vehicles in orbit, the space game changes substantially. A Falcon 9 rocket uses $200,000 in fuel just to get to LEO.  If you can remove the need to lift fuel from earth, economics begin to change very quickly.  Missions to Mars quickly drop in cost when we can refuel spacecraft in orbit. Exploration missions can increase spending on instrumentation instead of fuel, leading to new discoveries and better scientific ROI. Satellites can be designed for regular service, upgrade and refueling rather than the "one-and-done" method currently used by satellite producers. The possibilities are endless when we begin to fuel in orbit. 

A concept for an orbital fueling depot.  Image Credit: NASA

A concept for an orbital fueling depot.  Image Credit: NASA

2. Interplanetary Motherships

Once we have a reliable fueling station in orbit, the concept of motherships becomes feasible for the first time. Today we rarely consider this option in favor of launching directly from one planets surface to another. This choice is primarily driven by cost. However, once we have a space construction infrastructure in place, we can begin to build much larger interplanetary craft that are designed to operate solely in space. Motherships could shuttle colonists to Mars on a regular schedule, using reusable rockets and small passenger craft to deliver passengers to the ship prior to departure. Combined with emerging hibernation technologies, such craft would enable much longer manned missions to Europa or elsewhere in the solar system to search for life firsthand.  An alternative method to building a ship from scratch would be to hollow out an asteroid and turn it into a spacecraft. This approach comes with the added benefit of radiation shielding for humans as well as on-board fuel and raw materials to power the 3D printers that will be installed on the ship.

The Nautilus-X is a multi-mission space exploration vehicle that acts as a mothership in combination with the Orion crew capsule.  Image Credit: Wikipedia

The Nautilus-X is a multi-mission space exploration vehicle that acts as a mothership in combination with the Orion crew capsule. Image Credit: Wikipedia

3. Space Based Solar Arrays

Japan is planning to build orbital solar arrays to produce never-ending power to fuel their economy. The arrays would be positioned to collect power 24 hours a day and then beam the power back to a receiving station on earth via microwaves. This is not a far fetched sci-fi concept. It can be done. Space-based solar has been discussed for years due to its inherent advantages over terrestrial solar power. The sun never stops shining and you can take up huge amounts of real estate. There are only a handful of technological hurdles we would need to address to make this feasible. The single largest reason cited as opposition to space-based solar has been launch costs. Launching such a large structure from earth is simply too expensive. So, with construction crews and raw materials now available in space, is this a technology whose time may finally have arrived?  We think so. 

Space-based solar power arrays collect the sun's energy 24 hours a day and beam it back to earth using Microwaves.    Illustration: John MacNeill

Space-based solar power arrays collect the sun's energy 24 hours a day and beam it back to earth using Microwaves.  Illustration: John MacNeill

4. Expandable Commercial Space Stations

Bigelow aerospace will soon be delivering an inflatable habitat to the ISS, but this is only the beginning. Bigelow's future plans envision vastly larger depots, such as the 84-person Hercules station. These inflatable facilities are highly modular and can be built in stages. These systems are opening the door to replacing the ISS, selling space honeymoons, and enabling affordable commercial research labs. All of these stations will need water, fuel and supplies to operate.  If water and fuel can be delivered using the the space infrastructure envisioned above, we can further lower costs and improve the feasibility of such projects. 

The inflatable space station modules designed and built by Bigelow Aerospace.  Image Credit: Wikipedia

The inflatable space station modules designed and built by Bigelow Aerospace. Image Credit: Wikipedia

5. Orbital Server Farms

Big data requires server facilities that are also, well, big. These facilities are in a constant state of expansion in order to keep up with our rampant data production and processing needs. More data means more servers, and servers need power.  Lots of it.  Servers now account for an astonishing 10% of global electricity consumption, and this will continue to grow each year. They also need to be kept cool, leading to such facilities often being cited near water sources that can aid in the thermal management. Developing orbital server farms may be the solution to these problems.  Space based server farms take advantage of the deep cold of space and the near-infinite power of our nearest star.  Data can be processed and returned to earth using secure high-speed optical laser communications systems. 

These are just a few ideas to get the creative juices flowing. My hope is that these ideas are ultimately tame when compared to our future reality. We know from the rise of the internet that predicting the future uses of new platforms is difficult. Innovation requires us to set the table first, then we will see who really comes to dinner. The time has arrived to begin envisioning a future where space resources are readily available. What would you do when the entire solar system is open for business and you have all the resources you could ever need? Share your ideas with us!